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Arising from research in the computer science community,
constraint programming is a fairly new technique for solving
optimization problems. For those familiar with mathematical
programming, a number of language barriers make it difficult
to understand the concepts of constraint programming. In this
short tutorial on constraint programming, we explain how it
relates to familiar mathematical programming concepts and
how constraint programming and mathematical programming
technologies are complementary. We assume a minimal back-
ground in linear and integer programming.

‘ eorge Dantzig [1963] invented the

simplex method for linear program-
ming in 1947 and first described it in a
paper entitled “Programming in a linear
structure” [Dantzig 1948, 1949]. Fifty years
later, linear programming is now a strate-
gic technique used by thousands of busi-
nesses trying to optimize their global
operations. In the mid-1980s, researchers
developed constraint programming as a
computer science technique by combining
developments in the artificial intelligence

community with the development of new
computer programming languages. Fifteen
years later, constraint programming is
now being seen as an important technique
that complements traditional mathematical
programming technologies as businesses
continue to look for ways to optimize their
business operations.

Developed independently as a technique
within the computer science literature,
constraint programming is now getting at-
tention from the operations research com-
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munity as a new and sometimes better
way of solving certain kinds of optimiza-
tion problems. We provide an introduc-
tion to constraint programming for those
familiar with traditional mathematical
programming.

The Word Programming

For those familiar with mathematical
programming, one of the confusions with
regard to understanding constraint pro-
gramming is the fact that the names of
both areas share the word programming. In
fact, the two disciplines use this word
differently.

The field of mathematical programming
arose from its roots in linear program-
ming. In his seminal textbook, Dantzig
[1963, p. 1-2] introduces linear program-
ming by describing a few different plan-
ning problems:

Nevertheless, it is possible to abstract the un-
derlying essential similarities in the manage-
ment of these seemingly disparate systems. To
do this entails a look at the structure and state
of the system, and at the objective to be ful-
filled, in order to construct a statement of the
actions to be performed, their timing, and their
quantity (called a “program” or “schedule”),

which will permit the system to move from a
given status toward the defined objective.

The problems that Dantzig studied while
developing the simplex algorithm were
“programming problems,” because the
United States Defense Department in the
post-World War II era was supporting re-
search to devise programs of activities for
future conflicts. T. C. Koopmans suggested
that Dantzig use the term linear program-
ming as opposed to programming in a linear
structure, and Al Tucker then suggested
that Dantzig call the linear programming
problem a linear program [Dantzig and
Thapa 1997]. Therefore, the term program,
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previously used to describe a plan of ac-
tivities, became associated with a specific
mathematical problem in the operations
research literature.

Constraint programming is often called
constraint logic programming, and it origi-
nates in the artificial intelligence literature
in the computer science community. Here,
the word programming refers to computer
programming. Knuth [1968, p. 5] defines a
computer program as “an expression of a
computational method in a computer lan-
guage.” A computer program can be
viewed as a plan of action for the opera-
tions of a computer, and hence the com-
mon concept of a plan is shared with the
planning problems studied in the develop-
ment of the simplex method. Constraint
programming is a computer programming
technique, with a name that is in the spirit
of other programming techniques, such as
object-oriented programming, functional
programming, and structured program-
ming. Logic programming is a declarative,
relational style of programming based on
first-order logic, where simple resolution
algorithms are used to resolve the logical
statements of a problem. Constraint logic
programming extends this concept by us-
ing more powerful algorithms to resolve
these statements. Van Hentenryck [1999,
p. 4] writes:

The essence of constraint programming is a
two-level architecture integrating a constraint
and a programming component. The constraint
component provides the basic operations of the
architecture and consists of a system reasoning
about fundamental properties of constraint sys-
tems such as satisfiability and entailment. The
constraint component is often called the con-
straint store, by analogy to the memory store of
traditional programming languages. . . . Oper-
ating around the constraint store is a
programming-language component that speci-
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fies how to combine the basic operations, often
in non-deterministic ways.

Hence, a constraint program is not a state-
ment of a problem as in mathematical pro-
gramming, but is rather a computer pro-
gram that indicates a method for solving a
particular problem. It is important to em-
phasize the two-level architecture of a con-
straint programming system. Because it is
first and foremost a computer program-
ming system, the system contains repre-
sentations of programming variables,
which are representations of memory cells
in a computer that can be manipulated
within the system. The first level of the
constraint programming architecture al-
lows users to state constraints over these
programming variables. The second level
of this architecture allows users to write a
computer program that indicates how the
variables should be modified so as to find
values of the variables that satisfy the
constraints.

The roots of constraint programming
can be traced back to the work on con-
straint satisfaction problems in the 1970s,
with arc-consistency techniques
[Mackworth 1977] on the one hand and
the language ALICE [Lauriere 1978] that
was designed for stating and solving com-
binatorial problems on the other hand. In
the 1980s, work in the logic programming
community showed that the Prolog lan-
guage could be extended by replacing the
fundamental logic programming algo-
rithms with more powerful constraint
solving algorithms. For instance, in 1980,
Prolog II used a constraint solver to solve
equations and disequations on terms. This
idea was further generalized in the con-
straint logic programming scheme and im-
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plemented in several languages
[Colmerauer 1990; Jaffar and Lassez 1987;
Van Hentenryck 1989; and Wallace et al.
1997]. Van Hentenryck [1989] used the arc-
consistency techniques developed in the
constraint satisfaction problem framework
as the algorithm for the basic constraint
solving. This concept was termed finite
domain constraints.

In the 1990s, researchers transformed
constraint logic programming based on
Prolog to constraint programming by pro-
viding constraint programming features in
general-purpose programming languages.
Examples includes Pecos for Lisp [Puget
1992], ILOG Solver for C++ [ILOG 1999],
and Screamer for Common Lisp [Siskind
and McAllester 1993]. This development
made possible powerful constraint solving
algorithms in the context of mainstream
programming languages [Puget and
Leconte 1995]. Another rich area of re-
search in constraint programming has
been the development of special-purpose
programming languages to allow people
to apply the techniques of constraint pro-
gramming to different classes of problems.
Examples include Oz [Smolka 1993] and
CLAIRE [Caseau and Laburthe 1995]. In
designing such languages, their develop-
ers have sought to provide complete lan-
guages for doing computer programming
and hence the languages allow users to
implement constraint solving algorithms.
Departing from this approach, Van
Hentenryck [1999] designed OPL (Optimi-
zation Programming Language) to make it
easy to solve optimization problems by
supporting constraint programming and
mathematical programming techniques.
He did not deem the completeness of the
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language for computer programming or
the ability to program constraint solving
algorithms as important. Instead, he de-
signed the language to support the declar-
ative representation of optimization prob-
lems, providing the facilities to use an
underlying constraint programming en-
gine combined with the ability to describe,
via computer programming techniques, a
search strategy for finding solutions to
problems. The OPL language is not a com-
plete computer programming language,

Constraint programming is a
computer programming
technique.

but rather a language that is designed to
allow people to solve optimization prob-
lems using either constraint programming
or mathematical programming techniques.
An advantage of OPL is that the same lan-
guage is used to unify the representations
of decision variables from traditional
mathematical programming with pro-
gramming variables from traditional con-
straint programming. Some of the exam-
ples we present are related to those Van
Hentenryck [1999] presents.

Van Hentenryck was motivated to de-
sign OPL by the increased interest in
mathematical programming modeling lan-
guages, such as AMPL [Fourer, Gay, and
Kernighan 1993] and GAMS [Bisschop and
Meeraus 1982], and the recent use of con-
straint programming to solve combinato-
rial optimization problems. These NP-hard
problems include feasibility problems as
well as optimization problems. Constraint
programming is often used when people
want a quick feasible solution to a prob-
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lem rather than a provably optimal solu-
tion. Because a constraint programming
system provides a rich declarative lan-
guage for stating problems combined with
a programming language for describing a
procedural strategy to find a solution, con-
straint programming is an alternative to
integer programming for solving a variety
of combinatorial optimization problems.

Van Hentenryck [1989], Marriott and
Stuckey [1999], and Hooker [2000] de-
scribe some of the underlying theory of
constraint programming. In his book
about OPL, Van Hentenryck [1999] gives a
number of examples of how constraint
programming can be applied to real prob-
lems. Unfortunately, we have yet to find a
good book that gives the techniques for
applying constraint programming to solve
optimization problems and is written in
the spirit of the book by Williams [1999]
for mathematical programming. Williams
demonstrates a wide variety of modeling
techniques for solving problems using
mathematical programming.

Constraint Programming Formulations

To explain the constraint programming
framework, we will first characterize the
ways that constraint programming can be
applied to solve combinatorial optimiza-
tion problems by developing a notation to
describe these problems. Then we will
show formulations of feasibility problems
and optimization problems using the OPL
language.

We first formally define a constraint sat-
isfaction problem, using some of the ter-
minology of mathematical programming.
Given a set of n decision variables x;, x,,
..., X, the set D; of allowable values for
each decision variable x;, j=1,...,n,is
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called the domain of the variable x;. The
domain of a decision variable can be any
possible set, operating over any possible
set of symbols. For example, the domain
of a variable could be the even integers be-
tween 0 and 100 or the set of real numbers
in the interval [1,100] or a set of people
{Tom, Judy, Jim, Ann}. There is no restric-
tion on the type of each decision variable,
and hence decision variable can take on
integer values, real values, set elements, or
even subsets of sets.

Formally, a constraint c(xy, x,, . .., x,) is
a mathematical relation, that is, a subset S
of the set D; X D, X ... X D,, such that
if (x1, x5, ..., x,) € S, then the constraint is
said to be satisfied. Alternatively, we can
define a constraint as a mathematical func-
tionf: D; X D, X ... X D, = {0,1} such
that f(xy, x,, . .
Xy, ..., X,) is satisfied. Using this func-

., x,)=1if and only if c(xy,

tional notation, we can then define a con-
straint satisfaction problem (CSP) as

follows:

Given n domains D;, D,, ..., D,, and m
constraints f, fo, . .., f,p, find xq, x5, . .., X,
such that
fillxy, %000, x)=1, 1=k =m;
xj € D, l=j=n

This problem is only a feasibility problem,
and no objective function is defined. Nev-
ertheless, CSPs are an important class of
combinatorial optimization problems.
Here the functions f; do not necessarily
have closed mathematical forms (for ex-
ample, functional representations) and can
be defined simply by providing the set S
described above. A solution to a CSP is
simply a set of values of the variables such
that the values are in the domains of the
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variables and all of the constraints are
satisfied.
Optimization Problems

We have defined a constraint satisfac-
tion problem as a feasibility problem. With
regards to optimization, constraint pro-
gramming systems also allow specification
of an objective function. Notationally, we
denote the objective function as g: D; X D,
X ... X D, — N, so that at any feasible
point to the CSP, the function g(xy, xy, . . .,
x,) can be evaluated. For ease of exposi-
tion, we will assume that we are minimiz-
ing this objective function. An optimiza-
tion problem can then be stated as follows:

Minimize g(xy, x5, ..., x,,)
Subject to
,fk(xl/ x2/"-/xn):1/ 1 SkSm/

x; € D, l=j=n
Simple Examples

To present some simple examples of
constraint satisfaction and optimization
problems using constraint programming
techniques, we will need a language that
allows us to describe the decision vari-
ables x4, x,, . . ., x,, the constraints fi, f,,
..., fn, and the objective function g. Be-
cause we want to indicate the relation-
ships between constraint programming
and mathematical programming, we will
use OPL for these representations. We dis-
cuss programming a search strategy later.
OPL includes a default search strategy for
finding a solution to the problem, so we
do not always need to describe such a
strategy. A later example demonstrates
where a search strategy is required to be
able to solve the problem. In our presenta-
tions of OPL, we include line numbers on
the left to facilitate discussion.
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Map Coloring

Map coloring is an NP-complete combi-
natorial optimization problem. Consider a
set of countries and a set of colors with a
given set of adjacency relationships among
the countries. We need to assign the colors
to the countries so that no two adjacent
countries have the same color. This is an
OPL statement for this problem:

enum Countries. .. ;
enum Colors. .. ;
struct Neighbor {
Countries cl;
Countries c2;
}i
setof (Neighbor) neighbors = .. .;
var Colors color[Countries];
solve {
10 forall (n in neighbors) {
11 color[n.cl] <> color[n.c2];
12 3}
13 };

00 ~Jo Ul WN R
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Line 1 specifies the set of countries, and
Line 2, the set of colors, with each of these
sets given in a data file. Lines 3 through 6
are an OPL construct to define a record,
where a record consists of two elements
from the set of countries. Line 7 indicates
that the set of adjacency relationships (a
set called neighbors containing records
of type Neighbor) is also provided as
data for the problem. This data is specified
as a list of pairs of adjacent countries.
Line 8 contains the decision variables
for the problem, with a decision variable
color[j] for each country j, and the
value of this decision variable is one of the
elements of the set Colors. The domains
of the variables are elements of a set. Line
9 contains the keyword solve, indicating
that a constraint satisfaction problem is to
be solved. The forall statement in Line
10 is an OPL quantifier that says that the
constraints on Line 11 will be stated for
each member of the set neighbors, that
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is, for each pair of countries that are adja-
cent. The constraints for this problem, in
Lines 10 and 11, are simple to state. The
“<>" operator is used to specify that for
each member n of the set neighbors,
with each member consisting of a pair of
countries n.cl and n. c2, the color of the
first country n. c1 is different from that of
the second country n.c2 of the pair.

This example illustrates that variables
can be set-valued and that constraints can
be written as mathematical relations. With
a normal mathematical programming rep-
resentation, it is not possible to write some
mathematical relations, such as strict in-
equalities on continuous variables. In
mathematical programming, one normally
expresses these relations by introducing
additional binary variables and additional
constraints into a mixed integer program-
ming representation.

The Stable Marriage Problem

The stable marriage problem is a well-
studied problem in the operations research
literature. In fact, entire books have been
written on the subject, for example,
Gusfield and Irving [1989]. Given a set of
n women and an equal number of men,
we assume that each of the women has
provided a preference ordering of the men
by assigning each man a unique value
from the integers 1 through n. Similarly,
we assume that each of the men has pro-
vided a preference ordering of the women
by assigning each woman a unique value
from the integers 1 through n. Each man
has a woman he most prefers (a woman
he gives a ranking of 1), while each
woman also has a man that she prefers (a
man she gives a ranking of 1). A stable
marriage (for the men) is an assignment of
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the men to the women so that if a man A
prefers another man'’s (B’s) wife, she pre-
fers her current husband B to man A. Sim-
ilarly, a stable marriage (for the women) is
an assignment of the men to the women
so that if a woman A prefers another
woman’s (B’s) husband, he prefers his cur-
rent wife B to woman A. The stable mar-
riage problem is a simplified version of
the problem of assigning prospective
medical residents to hospitals, that the Na-
tional Resident Matching Program solves
annually.

The conditions for stability are easily
stated as a constraint satisfaction problem
in OPL:

1 enum Women . .. ;

2 enumMen ... ;

3 int rankWomen[Women,Men] = .. .;
4 int rankMen[Men,Women] = ... ;

5 var Women wife[Men] ;

6 var Men husband[Women] ;

7 solve {

8 forall (m in Men)

9 husband([wife[m]] = m;
10 forall (w in Women)
11 wifel[husband[w]] = w;
12 forall(m in Men & o in Women)
13 rankMen[m, o] <rankMen[m,wife[m]]=>
14 rankWomen [0, husband[o] ] <rankWomen[o, m] ;
15 forall (w in Women & o in Men)
16 rankWomen [w, o] <rankWomen [w, husband[w] ] =>
17 rankMen[o,wife[o]] <rankMen[o,w];

18 };

Line 1 specifies the set of women, and
Line 2, the men. The elements of these sets
can be used to index into arrays, and hence
the two-dimensional array rankWomen
specifies the women’s preference rankings
of the men, while the two-dimensional ar-
ray rankMen specifies the men’s prefer-
ence rankings of the women. The decision
variables for this problem, specified in
Lines 5 and 6, are given as two arrays. For
each element m in the set Men, wife [m]

is an element of the set Women that indi-
cates the wife of man m. Similarly, for each
element w in the set Women, husband [w]
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is an element of the set Men that indicates
the husband of wife w. The values of the
decision variables are specific elements of
a set and are not numerically valued.

As in the map-coloring problem, Line 7
indicates that we want to find a solution
to a constraint satisfaction problem. Again,
we use the forall constructor to indicate
a group of constraints. On Lines 8 and 9,
we state a constraint that specifies that the
husband of the wife of man m must be
man m. We state a similar constraint for
each woman w on Lines 10 and 11. Note
that the decision variables wife [m] and
husband [w] are being used to index into
the arrays of decision variables husband [ ]
and wife[ ], respectively. This kind of
constraint is called an element constraint.

Lines 12 through 14, and subsequently
Lines 15 through 17, specify the stability
relationships, with the rule for the men
stated before the rule for the women. The
operator “=>" is the logical implication
relation, while the “<” is a less-than
relation. The constraint in Lines 13 and
14 can be read as, “If rankMen [m, o] <
rankMen [m,wife[m] ], then it must be
the case that rankWomen [0, husband[o]]
< rankWomen [0, m].” This constraint is
satisfied as long as it is not the case that
the left-hand side of the implication is true
and the right-hand side of the implication
is simultaneously false. An alternative rep-
resentation of this constraint would be to
replace the implication relation “=>"
with the less-than-or-equal relation “<=",
which, in this case, would be an equiva-
lent representation. This is because both
the left-hand and right-hand sides are
themselves constraints (each using the
“<” relation), and these constraints evalu-
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ate to 0 or 1 and hence can be numerically
compared. This type of composition of
constraints is termed a metaconstraint, since
it is a constraint stated over other
constraints.
A Sequencing Problem

A set of blocks in a plant needs to be
painted. Each block has a designated
color, and we want to sequence the blocks
to minimize the cost of the number of
times we change the paint color during
the sequence. In addition, the blocks are
each given an initial position w; in the se-
quence and a global interval g such that if
a block is painted before its initial position
or after the position w; + g, a penalty cost
is assessed. This problem is a simplified
version of a paint-shop problem solved
with constraint programming at Daimler-
Chrysler. The following provides an OPL
model for this problem:

int nblocks = .. .;

enum Colors = ... ;

range blockrng 1. .nblocks;

blockrng whenblock[blockrng] = ... ;

Colors color([blockrng] = ... ;

int+ OKinterval = .. .;

int swapcost = ... ;

assert forall (i in 1. .nblocks—1)
whenblock[i] <= whenblock[i+1];

0 ~JOoUl i WN

10 setof (int) whencolor[c in Colors] =
11 {i] i inblockrng : color[i] =c};
12 var blockrng position[blockrng];
13 var blockrng whichblock[blockrng] ;
14 var int colorChanges in card(Colors)
—1 ..nblocks—1;
15 var int pencost in 0. .nblocks*nblocks;

17 minimize swapcost*colorChanges + pencost

18 subject to {

19 colorChanges = sum (i in1..nblocks—1)

20 (color [whichblock[i]]<>color
[whichblock([i+1]1]);

21 pencost = sum (i in blockrng)

22 (maxl (whenblock([i] —position[i],0) +

23 max]l (position[i] — (whenblock[i]
+OKinterval),0));

24 alldifferent (position) ;

25 alldifferent (whichblock) ;

26 forall (i in blockrng) {

27 whichblock[position[i]] = i;

28 position[whichblock[i]] = i;

29 }i

30 forall (c in Colors) {
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31 forall (k in whencolor[c] : k <>
whencolor[c].last()) {

32 position[k] < position[whencolor
[c].next (k) ];

33 }

34 }

35 };

Lines 1 and 2 specify the number of blocks
and the set of paint colors. Line 3 uses the
OPL keyword range to create a type
(blockrng) for representing the possible
positions (1 through the number of blocks)
in which we can place each block. This type
can then act as a set of integers, just as the
type Colors represents the set of colors.
Line 4 declares the array whenblock,
which corresponds to the values w;. We as-
sume that these values are given in increas-
ing order, and this is checked in Line 8. Line
5 specifies the color of each block, while
Line 6 declares the global interval g. Line 7
declares the cost of changing the color in
midsequence. Lines 10 and 11 determine,
for each possible color, the set of blocks to
be painted this color.

The model to solve this problem begins
at Line 12. Here, the array position indi-
cates the ordinal position of each block,
while the array whichblock declared in
Line 13 indicates which specific block is in
each position. Line 14 declares a variable
to count the number of times that the
color can be changed. A lower bound for
this is the number of colors less 1, while
an upper bound is the number of blocks
less 1. For ease of exposition, the penalty
cost is declared as a decision variable in
Line 15. Line 17 indicates that the objective
function is being minimized. The number
of changes in color is determined by com-
paring the color of adjacent blocks in Lines
19 and 20. As in the previous section, this
is done via a metaconstraint, where the in-
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equality color [whichblock[i]] <>
color [whichblock[i+1]] is evalu-
ated for each pair of adjacent blocks. This
inequality has a zero-one value, and these
values are summed for each pair to com-
pute the number of changes in color. The
penalty costs are computed in Lines 21
through 23. The OPL function max1 (a,
b) computes the maximum of the argu-
ments. The penalty is then computed by
penalizing both earliness and lateness,
with no penalty assessed when the condi-
tion whenblock[1i] <= position[i]
<= whenblock[i] +Okinterval
holds.

Lines 24 and 25 illustrate two examples
of global constraints. The constraint
alldifferent (position) indicates
that each member of the position array
should have a different value. In essence,
this single constraint on an array of
nblocks variables is a statement of
nblocks* (nblocks—1) pairwise in-
equalities. In this example, because the ar-
ray position has nblocks elements,
each with an integer value between 1 and
nblocks, the constraint is equivalent to
saying that the array position contains
an assignment of each block to a unique
position. An equivalent representation us-
ing mathematical programming tech-
niques would require nblocks*nblocks
binary variables, and 2*nblocks con-
straints. The element constraints in Lines
27 and 28 represent that the arrays posi-
tion and whenblock are inverses of each
other.

The constraints stated in Lines 30
through 34 help reduce the search space.
For each color, the blocks of that color are
considered in the order of the values in
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the whenblock array. Because of the
structure of the penalties, it is easy to see
that blocks of the same color should be or-
dered in the same order in which they ap-
pear in the input data. The constraints are
written for each of the blocks of each color.
The expression whencolor[c] .next (k)
indicates the block that follows block k in
the set whencolor[c].
Algorithms for Constraint Programming

Up to now, we have not discussed the
algorithm that a constraint programming
system uses to determine solutions to con-
straint satisfaction and optimization prob-
lems. In traditional constraint program-
ming systems, the user is required to
program a search strategy that indicates
how the values of the variables should
change so as to find values that satisfy the
constraints. In OPL, a default search strat-
egy is used if the user does not provide a
search strategy. However, users often pro-
gram a search strategy to effectively apply
constraint programming to solve a prob-
lem. We will describe the fundamental al-
gorithm underlying a constraint program-
ming system and then indicate the
methodologies used to program search
strategies.
Constraint Propagation and Domain
Reduction

We defined a constraint as a mathemati-
cal function f(xy, x,, . . ., x,,) of the vari-
ables. Within this environment, assume
there is an underlying mechanism that al-
lows the domains of the variables to be
maintained and updated. When a vari-
able’s domain is modified, the effects of
this modification are then communicated
to any constraint that interacts with that
variable. This communication is called con-
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straint propagation. For each constraint, a
domain reduction algorithm modifies the do-
mains of all the variables in that con-
straint, given the modification of one of
the variables in that constraint. The do-
main reduction algorithm for a particular
kind of constraint discovers inconsisten-
cies among the domains of the variables in
that constraint by removing values from
the domains of the variables. If the algo-
rithm discovers that a particular variable’s
domain becomes empty, then it can be de-
termined that the constraint cannot be sat-
isfied, and an earlier choice can be un-
done. A similar methodology is found in
the bound-strengthening algorithms used
in modern mathematical programming
solvers and discussed by Brearley, Mitra,
and Williams [1975]. A crucial difference
between the procedures used in mathe-
matical programming presolve implemen-
tations and domain reduction algorithms
is that in constraint programming, the do-
mains can have holes, while in mathemati-
cal programming, domains are intervals.
We can best demonstrate this methodol-
ogy with an example (Figure 1). Consider

two variables x and y, where the domains
of each variable are given as
D,={1,2,34,...,10} and
D,={1,2,34,...,10}, and the single con-
straint y=2x. If we first consider the vari-
able y and this constraint, we know that y
must be even, and hence the domain of y
can be changed to D,= {2,4,6,8,10}. Now,
considering the variable x, we see that
since y = 10, it follows that x = 5, and
hence the domain of x can be changed to
D,=1{1,2,34,5}. Suppose that we add a
constraint of the form (x modulo 2)=1.
This is equivalent to the statement that x is
odd. We can then reduce the domain of x
to be D, ={1,3,5}. Now, reconsidering the
original constraint y=2x, we can remove
the values of 4 and 8 from the domain of y
and obtain D, ={2,6,10}.

Some constraint programming systems
(for example, ILOG Solver, Oz, and
ECLiPSe) allow the programmer to take
advantage of existing propagators for
built-in constraints that cause domain re-
ductions and allow the programmer to
build his or her own propagation and do-
main reduction schemes for user-defined

12345 123 13
678910 / 45 | / 5
y =2x y<10 (x modulo 2) =1 y=2x
12345 246 26
1 678910 810 10

Figure 1: Constraint propagation and domain reduction are used to reduce the domains of the
variables x and y. The constraints y =2x, y = 10, (x modulo 2) =1, and y=2x are applied in an
order determined by constraint propagation, due to reductions in the domains of each of the

variables.
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constraints. However, many constraint
programming systems (for example, OPL,
ILOG Solver, and CHIP) are now strong
enough that they provide large libraries of
predefined constraints, with associated
propagation and domain reduction algo-
rithms, and it is often not necessary to cre-
ate new constraints with specialized prop-
agation and domain reduction algorithms.

Given a set of variables with their do-
mains and a set of constraints on those
variables, a constraint programming sys-
tem will apply the constraint propagation
and domain reduction algorithm in an it-
erative fashion to make the domains of
each variable as small as possible, while
making the entire system arc consistent.
Given a constraint f, as stated above and a
variable Xj, valued € D; is consistent with
fi if at least one assignment of the vari-
ables exists such that x;=d and f, =1 with
respect to that assignment. A constraint is
then arc consistent if all of the values in the
domains of all the variables involved in
the constraint are consistent. A constraint
system is arc consistent if all of the corre-
sponding constraints are arc consistent.
The term arc is used because the first CSPs
were problems with constraints stated on
pairs of variables, and hence this system
can be viewed as a graph, with nodes cor-
responding to the variables and arcs corre-
sponding to the constraints. Arc consis-
tency enables the domains of the variables
to be reduced while not removing poten-
tial solutions to the CSP.

Researchers have developed a number
of algorithms to efficiently propagate con-
straints and reduce domains so as to cre-
ate systems that are arc consistent. One al-
gorithm, called AC-5, was developed by
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Van Hentenryck, Deville, and Teng [1992].
Their article is important for constraint
programming because it unified the re-
search directions of the constraint satisfac-
tion community and the logic program-
ming community by introducing the
concept of developing different domain
reduction algorithms for different con-
straints as implementations of the basic
constraint propagation and domain reduc-
tion principle.

Constraint Programming Algorithms for
Optimization

As compared to linear and mixed-
integer programming, a weakness of a
constraint programming approach when
applied to a problem with an objective
function to minimize is that a lower
bound may not exist. A lower bound may
be available if the expression representing
the objective function has a lower bound
that can be derived from constraint propa-
gation and domain reduction. This is un-
like integer programming, in which a
lower bound always exists because of the
linear programming relaxation of the
problem. Constraint programming sys-
tems offer two methods for optimizing
problems, called standard and dichotomic
search.

The standard search procedure is to first
find a feasible solution to the CSP, while
ignoring the objective function g(xy, x,, . . .,
x,). Let yy, yo, . .
sible point. The search space can then be

., Y, represent such a fea-

pruned by adding the constraint g(yy, y,,
oY) > 8lxy, X, .
and continuing the search. The added con-

., x,) to the system
straint specifies that any new feasible

point must have a better objective value
than the current point. Propagation of this
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constraint may cause the domains of the
decision variables to be reduced, thus re-
ducing the size of the search space. As the
search progresses, new points will have
progressively better objective values. The
procedure concludes when no feasible
point is found. When this happens, the
last feasible point can be taken as the opti-
mal solution.

Dichotomic search depends on having a
good lower bound L on the objective func-
tion g(xy, X, . . ., x,,). Before optimizing the
objective function, a procedure must find
an initial feasible point, which determines
an upper bound U on the objective func-
tion. A dichotomic search procedure is es-
sentially a binary search on the objective
function. The procedure computes the
midpoint M= (U + L)/2 of the two
bounds and then solves a CSP by taking
the original constraints and adding the
., x,) < M. If it finds
a new feasible point, then it updates the

constraint g(xy, xp, . .

upper bound and continues the search in
the same way with a new midpoint M. If
it finds the system to be infeasible, then it
updates the lower bound, and the search
again continues with a new midpoint M.
Dichotomic search is effective when the
lower bound is strong, because the com-
putation time to prove that a CSP is infea-
sible can often be large. The use of dicho-
tomic search in cooperation with a linear
programming solver may be effective if
the linear programming representation can
provide a good lower bound. The differ-
ence between this procedure and a branch-
and-bound procedure for mixed-integer
programming is that the dichotomic
search stresses the search for feasible solu-
tions, whereas branch-and-bound proce-
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dures usually emphasize improving the
lower bound.
Programming a Search Strategy

Given a CSP, one can apply the con-
straint propagation and domain reduction
algorithms to reduce the domains of the
variables so as to arrive at an arc-
consistent system. However, while doing
this may determine whether the CSP is in-
feasible, it does not necessarily find solu-
tions to a CSP. To do this, one must pro-
gram a search strategy (or use a default
search strategy if the constraint program-
ming system provides one). Traditionally,
the search facilities that constraint pro-
gramming systems provide have been
based on depth-first search. The root node
of the search tree contains the initial val-
ues of the variables. At each node, the
user programs a goal, which is a strategy
that breaks the problem into two (or more)
parts and decides which part should be
evaluated first. A simple strategy might be
to pick a variable and to try to set that
variable to the different values in the vari-
able’s domain. This strategy creates a set
of leaves in the search tree and creates
what is called a choice point, with each leaf
corresponding to a specific choice. The
goal also orders the leaves amongst them-
selves within the choice point. In the next
level of the tree, the results of the choice
made at the leaf are propagated, and the
domains are reduced locally in that part of
the tree. This will either produce a smaller
arc-consistent system or a proof that the
choice made for this leaf is not possible. In
this case, the system automatically back-
tracks to the parent and tries other leaves
of that parent. The search thus proceeds in
a depth-first manner, until it finds a solu-
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z=2

Figure 2: In this diagram, each internal node represents a choice point. The nodes shaded with
horizontal lines represent nodes that are never created, because the corresponding values have
been removed from the variable’s domain. The nodes that are shaded with vertical lines repre-
sent nodes that are also never created, because there is a single choice for the decision variable
y once the selection for x has been determined. The nodes that are shaded black correspond to
solutions that are found. It is worthwhile to consider the node that exists as a result of the
choice x =3. After this choice is made, the constraint propagation and domain reduction algo-
rithms automatically remove the values 1 and 3 from the domain of y and there is no need for a
choice point corresponding to a choice for y. Since y =2 is the only remaining value, the search

for z can begin immediately.

tion at a node low in the tree or until it ex-
plores the entire tree, in which case it
finds the CSP to be infeasible. The search
strategy is enumerative, with constraint
propagation and domain reduction em-
ployed at each node to help prune the
search space.

A simple example will illustrate this
idea. Consider the following OPL exam-
ple, which shows a simple CSP on three
variables, each with the same domain.

1 var int xinl..3;

2 var intyinl..3;

3 var int zin1l..3;

4 solve {

5 x—y=1;

6 (z=x)\/ (z =vy);
7

}i

The constraint in Line 6 illustrates a logi-
cal constraint using the logical or operator
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(\/) indicating that either (or both) of the
conditions (z =x) or (z=vy) must hold. A
default search strategy for this problem
would try the different values for x, v,
and z in order, producing the search tree
shown in Figure 2.

ILOG Solver 4.4 and ILOG OPL Studio
2.1 incorporate a recent innovation in con-
straint programming systems [ILOG 1999],
allowing the programmer to use other
strategies beyond depth-first search. Con-
straint programming systems have tradi-
tionally used depth-first search because, in
viewing constraint programming as a par-
ticular computer programming methodol-
ogy, depth-first search dramatically sim-
plifies memory management issues. ILOG
Solver 4.4 and ILOG OPL Studio 2.1
(which uses ILOG’s Solver technology)
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Figure 3: In this graph with a graceful labeling, the numbers in an italic font are the labels for
the nodes, while the other numbers are the labels for the edges.

allow the programmer to use best-first
search [Nilsson 1971], limited-discrepancy
search [Harvey and Ginsberg 1995], depth-
bounded-discrepancy search [Walsh 1997],
and interleaved depth-first search
[Meseguer 1997]. In ILOG Solver, the basic
idea is that the user programs node evalua-
tors, search selectors, and search limits. Node
evaluators contain code that looks at each
open node in the search tree and chooses
one to explore next. Search selectors order
the different choices within a node, and
search limits allow the user to terminate
the search after it reaches some global
limit (for example, time or node count).
With these basic constructs in place, one
can easily program any search strategy
that systematically searches the entire
search space by choosing nodes to explore
(that is, programming node evaluators),
by dividing the search space at nodes (that
is, programming goals and creating choice
points), and by picking the choice to eval-
uate next within a specific node (that is,
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programming search selectors). Constraint
programming systems provide a frame-
work for describing enumeration strate-
gies for solving search problems in combi-
natorial optimization.

An Example of Search: Graceful Graphs
A graph G=(V,E) with n= V| nodes
and m= | E| edges is said to be graceful if

there are unique node labels
fVv—-{01,2,..., m}and unique edge la-
bels g:E — {1, 2, ..., m} such that
gG, )= 1f@—f(j)! for each edge eEE
with e= (i, j) (Figure 3). Graceful graphs
have applications in radio astronomy and
cryptography.

An OPL solution to the problem of find-
ing a graceful labeling of a graph follows:

1 int numnodes = ... ;

2 range Nodes 1. .numnodes;

3 struct Edge {

4 Nodes 1i;

5 Nodes j;

6 };

7 setof (Edge) edges = ... ;

8 int numedges = card (edges) ;
9 range Labels 0. .numedges;
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10 var Labels nl[Nodes];
11 var Labels el[edges];

12 solve {

13 alldifferent (nl);
14 alldifferent(el);
15 forall (e in edges) {
16 el[e]l=abs(nl[e.i] —nlle.jl);
17 el[e]l>0;

18 }

19 };

20 search {

21 generate(nl) ;

22 };

Line 1 declares that the number of nodes
is input data, while Line 2 declares a type
to represent the set of nodes. Lines 3
through 6 declare a type to hold the pairs
of edges, while Line 7 declares the set of
edges as input data. A type Labels is cre-
ated at Line 9 to represent the potential la-
bels of the nodes and edges. Lines 10 and
11 declare the arrays nl and el for the la-
bels of the nodes and edges, respectively.
The constraints for the problem are stated
in Lines 12 through 19. Lines 13 and 14
use the global constraint alldifferent
to indicate that all the node labels must be
different as well as the edge labels. Lines
15 through 18 indicate the relationship be-
tween the edge labels and the node labels.
Because all node labels must be distinct,
the constraint in Line 17 indicates that the
zero value is not possible for the edge
labels.

Lines 20 through 22 indicate a very sim-
ple search procedure for solving this prob-
lem. The statement generate (nl) indi-
cates that the different possible values for
the array n1 should be generated in a non-
deterministic way by choosing the variable
with the smallest domain size and instan-
tiating that variable to the smallest value
in its domain. After this selection is made,
constraint propagation will cause values to
be removed from the domains of other
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variables. A new variable is then chosen
and a value is instantiated for it. As the
search progresses, a new variable is cho-
sen, always using the smallest domain size
as the metric. It should be noted that with-
out the declaration of this procedure, it is
not possible to solve the example in Figure
3. In fact, until constraint programming
was applied to this particular example, it
was not known if the graph in this figure
had a graceful labeling.
An Example of Search: A Warehouse
Location Problem

Consider the problem of assigning
stores to warehouses while simultaneously
deciding which warehouses to open. The
data that is given is the cost of assigning
each store to each warehouse, a fixed cost
that is incurred when the warehouse is
opened, and the capacity (in terms of
number of stores) of each potential ware-
house. An OPL model for this problem us-
ing constraint programming constructs
and a search strategy for solving the prob-
lem follows:

int fixed = ... ;

int nbStores = ... ;

enum Warehouses . .. ;

range Stores 1. .nbStores;

int capacity[Warehouses] = ...;

int supplyCost[Stores,Warehouses] = ... ;

int maxCost = max (s in Stores, w in
Warehouses) supplyCostl[s, w];

8 Warehouses wlist[w in Warehouses] = w;

N oUW N

10 var int open|[Warehouses] in 0..1;
11 var Warehouses supplier[Stores];
12 var int cost[Stores] in 0. .maxCost;

14 minimize

15 sum(s in Stores) cost[s] + sum(w in
Warehouses) fixed * open[w]

16 subject to {

17 forall (s in Stores)

18 cost[s] =supplyCost[s, supplier(s]];
19 forall (s in Stores)

20 open|[supplier[s]] = 1;

21 atmost (capacity, wlist, supplier) ;

22 };

23

24 search {
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25 forall (s in Stores ordered by decreasing
regretdmin (cost([s]))

26 tryall (w in Warehouses

27 ordered by increasing supplyCost([s,w])

28 supplier([s] = w;

29 };

Lines 1 through 6 declare the data for the
problem and use the OPL keyword range
to create a type (Stores) to correspond to
the range of integers 1 through the num-
ber of stores. In Line 7, the maximum cost
of assigning any store to any warehouse is
computed. Line 8 computes the list of
warehouses as an array for use in the
atmost constraint in Line 21.

Lines 10 through 12 contain the decision
variables for the problem. Line 10 declares
an array of binary variables to indicate
whether a particular warehouse is open.
Line 11 declares an array that will contain
which warehouse is assigned to a particu-
lar store. For any store s, supplier[s]
is an element of the set Warehouses. We
also will create an array of decision vari-
ables cost [ ] that will contain the actual
cost of assigning a particular store to its
warehouse. This will be used in the search
strategy described in Lines 24 through 29.

Lines 14 and 15 indicate that we wish to
minimize a cost function. Lines 17 and 18
compute the cost of assigning a particular
store by looking up the cost in the data ar-
ray supplyCost [ ]. Lines 19 and 20 de-
scribe the constraints that require that, if a
store is assigned to a warehouse, the ware-
house must be open. Finally, the con-
straint expressed in Line 21 is a particular
kind of global constraint, described earlier.
The atmost constraint in this particular
case says that for each value wlist [w]
(which, in this case, is each element w of
the set Warehouses), the number of times
that this value may appear in the array
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supplier is at most capacity[w]. Ef-
fectively, this single constraint is counting
the number of times each warehouse is
used and placing a bound on that count.
Lines 24 through 29 describe a search
strategy for solving this problem. The ba-
sic idea behind the search strategy is to or-
der the stores via some merit function and
then, for each store, to try different ware-
houses to which it can be assigned, after
ordering the warehouses by a different
merit function. The statement in Line 25
orders the stores by what is known as the
minimal-regret heuristic. For a particular
store s, we can easily see that the domain
of possible values of the variable cost [s]
is initialized to be the values in the data
matrix supplyCost[s,w] for each possi-
ble warehouse w. Hence, if there were five
warehouses, the initial domain of
cost [s] would have five values. As the
search progresses toward a solution, val-
ues are eliminated from the domain of this
variable. At any particular time, we can
consider the two lowest costs in the do-
main of cost [s]. The value
regretdmin (cost[s]) is defined as the
difference between these two values. The
abbreviation dmin corresponds to domain
minimum and the abbreviation regret
indicates the regret, or the cost of switch-
ing from the minimum-cost warehouse for
that store to the next-higher-cost ware-
house. The statement in Line 25 dynami-
cally orders the stores by this value, that
is, it orders the stores by ranking first the
store that would incur the highest cost of
switching from the lowest-cost warehouse
to the next-lowest-cost warehouse. Lines
26 and 27 then order the warehouses for
that store by ranking first the warehouse
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with the lowest cost. In combination with
Line 28, the tryall instruction in Line 26
says that the system should try to assign
each warehouse in turn to this store. After
one store is assigned, the next store that is
ranked according to the minimal-regret
heuristic is assigned to its warehouse. If
this assignment is found to be infeasible,
the system will backtrack and try a differ-
ent warehouse for the last store that was
assigned. Since no search strategy is speci-
fied for the variables cost and open, the
OPL system will use a default search strat-
egy for those variables after the supplier
variables have been assigned. In this par-
ticular case, the values of cost and open
are determined by the constraints in Lines
18 and 20, respectively, so no specific
search strategy for those variables is
required.

This search strategy uses knowledge
about the problem to guide the search.
First, it chooses to assign stores to ware-
houses and then to open the warehouses.
By ranking the stores according to the cost
of switching and by ranking the ware-
houses by the cost of assigning the ware-
houses to a fixed store, the search strategy
prunes the search space by trying the
lower-cost warehouses first in the search
for a solution. In one particular instance,
without this search strategy, ILOG OPL
Studio 3.0 needed 1,894 choice points to
find a solution. With this search strategy,
ILOG OPL Studio 3.0 needed only 147
choice points.

Connections to Integer Programming

We have emphasized how constraint
programming can be applied to combina-
torial optimization problems. The search
strategies used in constraint programming
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are related to those used when solving
mixed-integer-programming problems via
branch-and-bound procedures. Further-
more, the problems that are solved often
have integer programming
representations.

For those familiar with integer program-
ming, the concept of search strategies we
have described should seem familiar. In fact,
branch and bound, which is an enumera-
tive search strategy, has been used to solve
integer programs since the mid-1960s.
Lawler and Wood [1966] give an early sur-
vey, while Garfinkel and Nemhauser [1972],
in their classic text, describe branch and
bound in the context of an enumerative
procedure. Nemhauser and Wolsey [1988]
provide a more recent discussion. In sys-
tems developed for integer programming,
users are often given the option of choos-
ing a variable selection strategy and a
node selection strategy. These are clearly
equivalent to the search selectors and
node evaluators we described.

A constraint programming framework
extends the basic branch-and-bound pro-
cedures implemented in typical mixed-
integer programming solvers in two funda-
mental ways. First, in most implementations
of branch-and-bound procedures for
mixed-integer programming, the imple-
mentation creates two branches at each
node after a variable x with a fractional
value v has been chosen to branch on. The
implementation then divides the search
space into two parts by creating a choice
point based on the two choices of (x = [vJ)
and (x =[v ). In the constraint program-
ming framework, the choices that are cre-
ated can be any set of constraints that di-
vides the search space. For example, given
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two integer variables x; and x,, one could
create a choice point consisting of the
three choices (x; < xy), (x; > xy), (x; = x,).
The second way that a constraint pro-
gramming framework extends the basic
branch-and-bound procedures is with re-
spect to the variable selection strategy. In
most branch-and-bound implementations,
the variable selection strategy uses no
knowledge about the model of the prob-
lem to make the choice of variable to
branch on. The integer program is treated
in its matrix form, and different heuristics
are used to choose the variable to branch
on based on the solution of the linear pro-
gramming relaxation that is solved at each
node. In a constraint programming ap-
proach, the user specifies the branching
strategy in terms of the formulation of the
problem. Because a constraint program is
a computer program, the decision vari-
ables of the problem can be treated as
computer programming variables, and one
programs a strategy using the language of
the problem formulation. Hence, to effec-
tively apply constraint programming tech-
niques, one uses problem-specific knowl-
edge to help guide the search strategy so
as to efficiently find a solution. In this way,
a constraint programming system, when
combined with a linear programming opti-
mizer, can be viewed as a framework that
allows users to program problem-specific
branch-and-bound search strategies for
solving mixed-integer programming prob-
lems by using the same programming ob-
jects for declaring the decision variables
and for programming the search strate-
gies. Combinations of linear programming
and constraint programming have ap-
peared in Prolog III [Colmerauer 1990],
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CLP(R) [Jaffar and Lassez 1987], CHIP
[Dincbas et al. 1988], ILOG Solver and
ILOG Planner [ILOG 1999] and ECLiPSe
[Wallace, Novello, and Schimpf 1997].

A number of branch-and-bound imple-
mentations for mixed-integer program-
ming allow users to program custom
search strategies, including MINTO
[Nemhauser, Savelsbergh, and Sigismondi
1994], IBM’s OSL [1990], Dash Associates
XPRESS-MP [2000], and ILOG CPLEX
[2000]. In particular, MINTO allows users
to divide the search space into more than
one part at each node. However, the cru-
cial difference between constraint pro-
gramming systems and these mixed-
integer programming branch-and-bound
solvers is that the mixed-integer program-
ming systems require the users to specify
their search strategy in terms of a matrix
formulation of the problem, whereas a
constraint programming system uses a sin-
gle programming language for both mod-
eling the problem to be solved and for
specifying a search strategy to solve the
problem. The key point is that the decision
variables of an optimization problem can
be treated as programming language vari-
ables within a computer programming
environment.

Contrasting Formulations

Earlier we gave an example of solving a
warehouse location problem using con-
straint programming techniques. It is
worth contrasting this formulation with a
pure integer programming formulation:

1 int fixed = .. .;

2 int nbStores = ...;

3 enum Warehouses ... ;

4 range Storesl..nbStores;

5 int capacity[Warehouses] = ... ;

6 int supplyCost[Stores,Warehouses] = .. .;
7
8

var int open[Warehouses] in 0..1;
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9 var int supply[Stores,Warehouses] in 0..1;
10
11 minimize
12 sum (w in Warehouses) fixed*open [w] +
13 sum(w in Warehouses, s in Stores)
supply Cost [s,w] * supply [s,w]
14 subject to {

15 forall (s in Stores)

16 sum (w in Warehouses) supply [s, w] =1;
17 forall (w in Warehouses, s in Stores)

18 supply [s,w] <= open[w];

19 forall (w in Warehouses)

20 sum(s in Stores) supplyl[s,w]

<= capacity[w];

Lines 1 through 6 are identical to the con-
straint programming formulation earlier
and specify the data for the problem. The
meaning of the array open[ ] is also the
same. For each potential pair of a store s
and a warehouse w, the Boolean variable
supply[s,w] indicates whether store s is
assigned to warehouse w. The objective
function is stated in Lines 12 through 13.
The cost of assigning store s, which was
represented by a decision variable in the
constraint programming formulation, is
implicitly computed in the expression in
Line 13. Lines 15 and 16 specify the con-
straint that each store must be assigned to
exactly one warehouse. Lines 17 and 18
specify that a store can be assigned only to
an open warehouse, while Lines 19 and 20
specify the constraint that limits the num-
ber of stores that can be assigned to any
particular warehouse.

The constraint programming formula-
tion uses a linear number of variables with
larger domains to describe which stores
are assigned to which warehouses, while
the integer programming formulation uses
a quadratic number of binary variables.
The constraint that a store can be assigned
to exactly one warehouse is implicit in
the constraint programming formulation
because there is a decision variable
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supplier that indicates the specific ware-
house that is assigned. In the integer pro-
gramming formulation, constraints explic-
itly enforce this restriction. In the integer
programming formulation, the assignment
of stores to open warehouses is enforced
by an inequality, while the constraint pro-
gramming formulation enforces this re-
striction via an element constraint. Finally,
the constraint programming formulation
uses a global constraint to enforce the re-
striction on the number of stores per ware-
house, while this restriction is enforced
with a set of linear constraints in the inte-
ger programming formulation.

Is one formulation better than the other
is? Making a direct comparison is difficult
because mixed-integer programming solv-
ers like CPLEX have advanced techniques,
such as cut generation and presolve reduc-
tions, that improve the performance of the
MIP optimizer. In addition, the perfor-
mance of the constraint programming al-
gorithms sometimes depends on the un-
derlying data for the problem as well as
the effectiveness of the search strategy. An
additional consideration is whether one is
interested in obtaining a proof of optimal-
ity or just interested in a good feasible so-
lution within a certain time limit. We need
more research to better understand how to
make this kind of comparison.

Hybrid Strategies

One of the exciting avenues of research
is to explore how constraint programming
and traditional mathematical program-
ming approaches can be used together to
solve difficult problems. We indicated
how a constraint programming system can
serve as a framework for programming a
branch-and-bound procedure for integer
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programming that takes advantage of the
problem structure to influence the variable
and node selection process. There are
other avenues in which the two ap-
proaches can cooperate. In the first, we
consider stating formulations that contain
a mixture of linear and “not-linear” con-
straints. In the second, we consider de-
composing a problem to use constraint
programming to solve one part of the
problem and mathematical programming
to solve a second part.
A Hybrid Formulation of the Warehouse
Location Problem

Another way of solving the warehouse
location problem is to combine the two
formulations. In the following OPL model,
we omit the data section and the search
strategy (which are the same as in the pre-
vious formulations) and just show the de-
cision variables and the constraints.

var int open[Warehouses] in 0..1;

var int supply[Stores,Warehouses] in 0..1;
var Warehouses supplier[Stores];

var int cost[Stores] in 0. .maxCost;

minimize with linear relaxation
sum (w in Warehouses) fixed*open([w] +
sum(w in Warehouses, s in Stores)
supplyCost[s,w] *supply[s,w]
9 subject to {
10 forall (s in Stores)

00 J o Ul ixWN

11 sum(w in Warehouses) supplyl(s,w] = 1;

12 forall (w in Warehouses, s in Stores)

13 supply[s,w] <= open([w];

14 forall (w in Warehouses)

15 sum(s in Stores) supply(s,w]<=capacity[w];
16

17 forall (s in Stores)

18 cost[s] = supplyCost(s,supplier(s]];

19 forall (s in Stores)

20 open[supplier[s]] = 1;

21 atmost (capacity, wlist, supplier) ;

23 forall (s in Stores)

24 supply[s,supplier(s]] = 1;
25 forall (s in Stores)
26 cost[s] = sum(w in Warehouses)

supplyCost[s,w] *supply([s,w]

Lines 1 through 4 combine the variables of
the two formulations and have the same
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meaning. In Line 6, the phrase “with
linear relaxation” indicates that
OPL should solve the problem by extract-
ing the linear constraints and using the
objective function on the linear relaxation
of those constraints to determine a lower
bound that can be used to prove optimal-
ity of the procedure. (We do not use di-
chotomic search here.) Lines 7 through 8
are the same objective function. Lines 10
through 15 are the constraints from the
linear formulation, while Lines 17
through 21 are the constraints from the
constraint programming formulation.
Lines 23 through 26 are the constraints
that link the two formulations. Lines 23
and 24 relate the supply and supplier
variables, while Lines 25 and 26 deter-
mine the value of the cost variable in
terms of the supply variables. The addi-
tional constraints help the combined for-
mulation to prune the search space and
reduce the overall solution time. For ex-
ample, we can solve a simple five-
warehouse, five-store problem using the
pure constraint programming formulation
with 147 choice points, while we can
solve the same problem using the hybrid
formulation with 53 choice points. For
this particular data set, we can solve all
three formulations in a fraction of a sec-
ond, making their comparison difficult.
With the advances in available technol-
ogy, exploring these kinds of mixed for-
mulations is now possible. Such tech-
niques might prove to be effective solution
strategies for hard combinatorial optimiza-
tion problems that benefit from multiple
representations. Jain and Grossman [2000]
have investigated these concepts for some
machine-scheduling applications.
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Column Generation and Crew
Scheduling

Constraint programming can be used
when implementing column-generation
approaches for solving different kinds of
combinatorial optimization problems. The
classic example is the cutting stock prob-
lem, in which one solves knapsack prob-
lems to generate the possible patterns to
use and then solves linear programs to de-
termine how many cuts of each pattern to
use. The dual solutions to each linear pro-
gram change the cost structure of the
knapsack problem, which one solves to
generate a new column of the linear
program.

Another example is crew scheduling.
For a number of years, people have solved
crew scheduling problems by writing
computer programs to generate the poten-
tial pairings of crews to flights. The pro-
grams have to generate pairings, corre-
sponding to a sequence of flights for a
single crew, that are low in cost and sat-
isfy the complex duty rules included in
volumes of carrier regulations. The typical
approach used in the past, which is still
used today, is a generate-and-test approach:
One generates a complete pairing and
then tests the feasibility of this pairing
against all of the rules programmed into
the system. After generating a suitable
number of pairings, one solves a set-
partitioning problem by letting each pair-
ing correspond to one column of the set-
partitioning problem.

Constraint programming can be used to
generate the pairings. Given a set of flights
and a flight schedule, one can declare vari-
ables that correspond to the sequence of
flights covered by one pairing. One can
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then state constraints that dictate the rules
about sequences of flights, how many
hours can be in a total sequence of flights,
the required time between flights, and so
forth. One can then carry out a search pro-
cedure to generate potential flight
sequences. As the search proceeds, the un-
derlying constraint propagation and do-
main reduction algorithms prune the
search space. This becomes more of a test-
and-generate method, where the constraints
that define possible pairings are consis-
tently used to help guide the search for
possible feasible solutions. After generat-
ing a suitable set of pairings, one can use
them as columns for a set-partitioning prob-
lem which is solved by an integer pro-
gramming solver. An example of this ap-
proach can be found on the ILOG Web site
in the OPL model library at http: //www
.ilog.com/products/oplstudio/.

Many operations research applications
incorporate various kinds of enumeration
strategies that are usually embedded in
complex computer programs. Constraint
programming provides an attractive alter-
native for implementing these kinds of
enumeration schemes. We prefer to call
this constrained enumeration.
Constraint-Based Scheduling

Another interesting application of con-
straint programming is in scheduling
problems. We define a scheduling problem
as a problem of determining a sequence of
activities with given precedence relation-
ships, subject to constraints on resources
that the activities compete for. For exam-
ple, the classic job shop scheduling prob-
lem, in which a set of jobs consisting of
sequential tasks must be scheduled on ma-
chines, fits into this framework. To sup-
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port this class of problems, many con-
straint programming systems extend their
frameworks to directly represent these
problems. Following is the job shop prob-
lem stated in OPL:

int nbMachines = .. .;

range Machines 1. .nbMachines;
int nbJobs = ... ;

range Jobs 1. .nbJobs;

int nbTasks = .. .;

range Tasks 1. .nbTasks;

Machines resource[Jobs, Tasks] = ... ;

int+ duration[Jobs, Tasks] = ...;

int totalDuration = sum(j in Jobs, t in Tasks)
duration[j,t];

O W oo Jo U B W

[

12 scheduleHorizon = totalDuration;

13 Activity task[j in Jobs, t in Tasks]
(duration[j, tl);

14 Activity makespan(0) ;

16 UnaryResource tool [Machines];

18 minimize

19 makespan.end

20 subject to {

21 forall(j in Jobs)

22 task[j, nbTasks] precedes makespan;
23

24 forall(j in Jobs)

25 forall(t in 1. .nbTasks-1)

26 task([j, t] precedes task[j, t + 11;
27

28 forall (j in Jobs)

29 forall (t in Tasks)

30 task[j, t] requires

tool[resourcel[j, t]];

The first nine lines define the input data
of the problem, consisting of the number
of machines, the number of jobs, and the
number of tasks. We use the OPL key-
word range to create a type to corre-
spond to an integer range. The array re-
source, declared in Line §, is input data
consisting of the identity of the machine
that is needed to do a particular task
within a job. Line 9 declares the array du-
ration that is the time required to exe-
cute each task within each job. Line 10
computes the maximum duration of the
entire schedule, which is used in Line 12
to set the schedule horizon for OPL. Line

INTERFACES 31:6

13 declares a decision variable task[ 7, t]
for each job j and task t that is an activ-
ity. By default, the keyword Activity
implicitly indicates a decision variable. An
activity consists of three parts—a start
time, an end time, and a duration. In the
declaration given here, the durations of
each activity are given as data. When an
activity is declared, the constraint

task[j,t].start + task[j,t].duration
= task[j,t].end

is automatically included in the system.
Line 14 declares an activity makespan of
duration 0 that will be the final activity of
the schedule. Line 16 declares the ma-
chines to be unary resources. A unary re-
source is also a decision variable, and we
need to decide what activity will be as-
signed to that resource at any particular
time.

The problem is then stated in Lines 18
through 31. Lines 18 and 19 indicate that
our objective is to finish the last activity as
soon as possible. Lines 21 and 22 indicate
that the last task of each job should pre-
cede this final activity. Lines 24 through 26
indicate the precedence order of the activi-
ties within each job. The word precedes
is a keyword of the language. In the case
of Line 26, the constraint is internally
translated to the constraint

task[j,t].end <=
task[j,t+1].start

Finally, Lines 28 through 30 indicate the
requirement relationship between activi-
ties and the machines by using the
requires keyword. The declaration of
the set of requirements causes the creation
of a set of disjunctive constraints. For a
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particular machine m described by a unary
resource tool [m], let task[j1,tl1] and
task[j2, t2] be two activities that re-
quire that machine m. In other words, sup-
pose that the data is given such that
resource[jl,tl] =resource[j2,t2] =m.
Then the following disjunctive constraint,
created automatically by the system, de-
scribes the fact that the two activities can-
not be scheduled at the same time:

task[jl,tl].end<=task[j2,t2].start\/

task[j2,t2] .end<=task[jl,tl].start

Here, the symbol “\ /” means “or,” and
the constraint states that either
task[j1l,tl] precedes task[j2,t2] or
vice versa.

In practice, the kinds of scheduling
problems that are solved using constraint
programming technologies have more var-
ied characteristics than the simple job shop
scheduling problem. Activities can be
breakable, allowing the representation of
activities that must be inactive on week-
ends. Resources can be single machines,
discrete resources such as a budget, or res-
ervoirs that are both consumed and pro-
duced by different activities. Constraint
programming is an effective technology
for solving these kinds of problems for a
number of reasons. First, the nature and
strength of the constraint propagation and
domain reduction algorithms developed
specifically for scheduling help to immedi-
ately prune the search space and deter-
mine bounds on the start and end times of
activities. Second, in practice one does not
necessarily need to find a provably opti-
mal solution to such problems but to
quickly find a good feasible solution. The
architecture of a constraint programming
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system is suited to finding such solutions,
and problems with millions of activities
have been successfully solved in this way.
Conclusions

Our experience indicates that constraint
programming is better than integer pro-
gramming in applications that concern se-
quencing and scheduling, and for prob-
lems in which an integer programming
formulation contains much symmetry. In
addition, strict feasibility problems that
are in essence constraint satisfaction prob-
lems are good candidates for applying
constraint programming techniques. Inte-
ger programming seems to be superior for
problems in which the linear program-
ming relaxations provide strong bounds
for the objective function. Hybrid tech-
niques are relatively new, although Jain
and Grossman [2000] describe their effec-
tive use in some machine-scheduling
applications.

Sessions at recent INFORMS meetings
give evidence of growing interest in how
constraint programming technologies and
mathematical programming approaches
can complement each other. Because of the
introduction of such languages as OPL
and such systems as ECLiPSe, we can eas-
ily explore alternative and hybrid ap-
proaches to solving difficult problems. We
think that these explorations will continue
and that additional difficult industrial
problems will be solved using combina-
tions of the two techniques. We hope that
operations research professionals will be-
come as familiar with constraint program-
ming as they are today with linear
programming.
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